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Introduction

ABSTRACT

Lung cancer heterogeneity is a major barrier to effective treatments and encompasses not only the
malignant epithelial cell phenotypes and genetics but also the diverse tumor-associated cell types.
Current techniques used to investigate the tumor microenvironment can be time-consuming,
expensive, complicated to interpret, and often involves destruction of the sample. Here we use
standard hematoxylin and eosin—stained tumor sections and the HALO Al nuclear phenotyping
software to characterize 6 distinct cell types (epithelial, mesenchymal, macrophage, neutrophil,
lymphocyte, and plasma cells) in both murine lung cancer models and human lung cancer sam-
ples. CD3 immunohistochemistry and lymph node sections were used to validate lymphocyte calls,
while F4/80 immunohistochemistry was used for macrophage validation. Consistent with
numerous prior studies, we demonstrated that macrophages predominate the adenocarcinomas,
whereas neutrophils predominate the squamous cell carcinomas in murine samples. In human
samples, we showed a strong negative correlation between neutrophils and lymphocytes as well
as between mesenchymal cells and lymphocytes and that higher percentages of mesenchymal cells
correlate with poor prognosis. Taken together, we demonstrate the utility of this Al software to
identify, quantify, and compare distributions of cell types on standard hematoxylin and eosin—stained
slides. Given the simplicity and cost-effectiveness of this technique, it may be widely beneficial for
researchers designing new therapies and clinicians working to select favorable treatments for their
patients.

© 2023 United States & Canadian Academy of Pathology. Published by Elsevier Inc. All rights reserved.

variety of histologic variants lead to numerous possible diagnoses,
each with its own preferred treatment regimen."” Among the

The complexity of the tumor microenvironment (TME) is vast,
with numerous cellular and structural patterns distinct in each
cancer. Even within non—small cell lung cancer (NSCLC), a wide
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different subtypes of NSCLC, adenocarcinoma (ADC) and squa-
mous cell carcinoma (SCC) are the most commonly diagnosed.
Pathological assessment of patient biopsies has long been the
standard for diagnosis, and pathologists are skilled at identifying
the multitude of cell types, in addition to the malignant epithelial
cells, that can be found in carcinomas.> > Although the role of the
pathologist will never be replaced, a method for less highly
trained researchers to quickly and accurately assess the types of
cells within a histologic sample would greatly benefit the field. As
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NSCLC treatments move toward the use of immunotherapy as a
first-line therapy for most cancers,” assessment of the TME is
critical.

ADC and SCC TMEs are very heterogeneous and contain
numerous types of cells, often collectively referred to as “stroma.”
Commonly identified cell types in NSCLC TME include mesen-
chymal cells, plasma cells, macrophages, neutrophils, and lym-
phocytes.>*%7 Although cells such as CD8+ T cells in the TME can
be tumor-eliminating, it is generally accepted that tumors repro-
gram the microenvironment to favor tumor-promoting cells. In
particular, mesenchymal cells, such as cancer-associated fibro-
blasts, can produce various cytokines, including transforming
growth factor beta, that can create an immunosuppressive TME by
repressing CD8+ T cells and increasing regulatory T cells.®?
Similarly, tumor-associated neutrophils are also thought to be
predominantly immunosuppressive, particularly by producing
arginase and reactive oxygen species.'”!" A high neutrophil-to-
lymphocyte ratio typically predicts poor overall survival and
poor responses to immunotherapies.'”!'> However, current stra-
tegies to study the neutrophil-to-lymphocyte ratio of patients
with cancer involve blood samples, but these may not represent
the immune microenvironment at the tumor site.

ADC and SCC differ in their histology as well as genetic profiles,
leading to divergent treatment options, with ADC possessing
mutations allowing for more targeted therapies.! > Among the
many genetic alterations present in NSCLCs, mutations in genes
such as KRAS, TP53, and EGFR are some of the most common.
Mutations in KRAS and EGFR are more frequent in ADCs, with KRAS
mutated in ~32% and EGFR in ~27% of tumors. However, mutations
in these targetable genes are much less frequent in SCCs that
instead have frequent mutations in TP53 (90%), PIK3CA, and PTEN
(15%)."1* To produce large amounts of histologically and geneti-
cally similar tumors, researchers have designed genetically engi-
neered mouse models (GEMMs) of lung cancers to mimic patient
genetics and have used these models to systematically charac-
terize lung cancer TMEs. Data have shown that murine lung ad-
enocarcinomas tend to attract macrophages,'>~"” but if there are
alterations in EGFR, LKB1, or in late-stage KRAS-driven tumors,
neutrophils may be recruited.”®?° In murine squamous lung
cancers, neutrophils predominate and are believed to drive a
transition from ADC to SCC states.!>"21%2

Current methods to characterize the TME include flow
cytometry, single-cell RNAseq (scRNAseq), mass cytometry, and
other multiplexed immunohistochemistry approaches.*%2324
Flow cytometry and standard single-cell RNAseq are robust
methods but require a relatively large amount of live starting
material that must be dissociated prior to experimental assess-
ment. Dissociating tissues can lead to the loss of fragile cell pop-
ulations and erase spatial information. Spatial scRNAseq can
overcome this hurdle but is expensive to implement. Other op-
tions include spatial profiling through multiplexed immunohis-
tochemistry and imaging mass cytometry techniques such as
fluidigm or spatial proteomics.”>?® These are powerful ap-
proaches but require specialized equipment, a large investment of
money for reagents, and trained personnel to interpret results.”*
Therefore, developing a TME quantification method that is more
cost effective, faster to implement, and retains the sample is
imperative to further research efforts and to provide clinicians
with a tool to help guide treatment for their patients.

In this study, we used the HALO Al nuclear phenotyping soft-
ware (Indica Labs) to identify differences in the TME in both hu-
man and murine NSCLC tissues. We investigated 5 murine models,
including Kras®?®/p53-null, Pik3ca®***/p53-null, EGFRT’9OM/L858R
Kras®'?P/Lkb1-null, and Lkb1-null/Pten-null, to determine how the

presence of these mutations alters the TME. We confirmed the
accuracy of the algorithm with both correlations to immunohis-
tochemistry (IHC) staining and testing on lymphocyte-rich lymph
node sections. In addition to further identifying differences in
these tumors, we confirmed accumulations of macrophages in
murine adenocarcinomas and neutrophils in murine squamous
cell carcinomas. In human samples, we uncovered extremely
strong negative correlations between both mesenchymal cells and
neutrophils with lymphocytes, and higher proportions of
mesenchymal cells predicted poor overall survival.

Methods
Mouse Models

Mouse models included were: KRASC?P/p53-null lung
adenocarcinoma,’’?® KRAS®'?Y/p53-null|Ezh2-heterozygous and
KRASC12P/p53-nuil/Ezh2-null  lung adenocarcinoma,”®  PIK3-
CAE>*K/p53-null lung adenocarcinoma,’® EGFRT79OM/A858R jyypg
adenocarcinoma,’! KRAS¢'2P/Lkb1-null mixed lineage tumors,”>?
and Lkb1-null/Pten-null squamous cell carcinoma."” All animal
work was approved by the University of Kentucky, Dana-Farber
Cancer Center, or Boston Children’s Hospital Institutional Animal
Care and Use Committee. Adult mice were allowed to inhale Cre- or
FlpO-encoding virus to initiate autochthonous lung tumors. Mice
housed at the University of Kentucky all received 2.9 x 108 pfu of
adenoviral Cre (University of lowa). Historical banked tissues from
previous studies were also used.

Patient Samples

The patient tissue was obtained from the Markey Cancer
Center Biospecimen Procurement and Translational Pathology
Shared Resource Facility (BPTP SRF). A tissue microarray (TMA)
was prepared from patient biopsies from de-identified excess
tissue. The array consisted of 3 core biopsies from each patient,
with a total of 83 adenocarcinoma (ADC), 102 squamous cell car-
cinoma (SCC), 14 adenosquamous and mixed histology tumors
(ADSCC), and 17 poorly differentiated tumors, including 2 large
cell carcinoma, 1 giant cell carcinoma, 1 pleomorphic carcinoma,
and 1 sarcomatoid carcinoma.

Histology and Immunohistochemistry

All tissues were fixed with 10% neutral-buffered formalin
overnight. They were then transferred to ethanol, embedded in
paraffin, and sectioned at 4 pum. CD3 immunohistochemistry was
performed using the BPTP SRF at the Markey Cancer Center. An-
tigen retrieval was performed in a Biocare Medical decloaking
chamber at 95 °C for 30 minutes with Dako Target Retrieval So-
lution, pH 9 (S236784-2). Endogenous peroxidase activity was
quenched with Dako peroxidase block (K800021-5). The primary
antibody for CD3 (Dako, IR503 ready-to-use) was added and
incubated at room temperature for 45 minutes. Amplification was
performed using Dako Envision anti-rabbit horseradish peroxi-
dase conjugated antibody for 30 minutes at room temperature
(K4003). Detection was performed with DAB for 10 minutes (Dako
K346711-2). Slides were then counterstained with Harris hema-
toxylin. F4/80 staining was also performed by the BPTP SRE. An-
tigen retrieval was performed on the Ventana Discovery Ultra
system using the CC2 mild protocol (citrate pH 6 buffer, 32 minutes
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at 91 °C). The primary antibody anti-F4/80 (Cell Signaling, #70776)
was used at 1:200 for 1 hour at 37 °C. Detection was performed
using Ventana OmniMap anti-Rabbit-HRP for 20 minutes, fol-
lowed by Ventana DAB. Slides were then counterstained with
Mayer’s hematoxylin and blued with ammonia water. Dehydrated
mounted slides were scanned with the Aperio slide scanner at x40
magnification, 6 tumor-containing regions of 355 mm? were
selected, and the HALO classifier Multiplex IHC v3.0.4 was used to

quantify the positively stained cells within the regions.

HALO Al Nuclear Phenotyper Algorithm

Histology slides were scanned at x20 to x40 with an Aperio
AT2 scanner in brightfield mode. The scanner had an Olympus
x20 objective with an optional x2 magnifier, with a resolution
of 0.5 pum/pixel at x20 magnification and 0.25 pm/pixel
at x40 magnification. The format was an SVS file, a tiled TIFF,
which was then compressed to JPEG. Z-stacking was not used. The
images were loaded into the HALO program, and the Al nuclear
phenotyper algorithm was trained for 556,930 iterations using a
total of 34,427 nuclei from 52 different samples. The accuracy of
the final nuclear phenotyper algorithm was verified by patholo-
gists at the Markey Cancer Center. For each murine lung section,
the tumor areas with approximately 50 um surrounding area were
hand-annotated for analysis. For the KRAS/Lkb1-null tumors,
adenocarcinoma and squamous cell carcinoma regions were
manually sub-annotated by an experienced researcher.

Statistics and Reproducibility

Statistics were performed using GraphPad Prism v9.2.0. The
statistical tests and the exact sample numbers (n) are listed in the
figure legends. The HALO software versions were HALO
v3.5.3577.214 and HALO Al 3.5.3577. For murine data, all tumors of
a given subtype present on a slide were analyzed together. For
human data, results from 3 independent core biopsies were
averaged. The n listed in the figures are biological replicates for
individual mice or humans.

Results

Training and Validation of the Nuclear Phenotyper Algorithm for
Human and Murine Lung Cancer

To profile lung cancer TME components using hematoxylin and
eosin (H&E)—stained sections, we developed an algorithm that
could reliably identify cell types in both patient and murine
samples based on nuclear morphology. We used the HALO Al
nuclear phenotyping software and trained the software in itera-
tions to identify 6 distinct cell types: epithelial cells, mesenchymal
cells, plasma cells, macrophages, neutrophils, and lymphocytes.
Overall, 556,930 iterations were run using 34,427 nuclei from 19
human samples and 33 murine samples. Representative images of
human squamous cell carcinoma (Fig. 1A) and murine squamous
cell carcinoma (Fig. 1B) show all 6 subtypes of cells identified by
the algorithm. Neutrophils were identified by their poly-
morphonuclear or segmented nuclei. Plasma cells contained a
characteristic perinuclear “hof,” which is a light area adjacent to
the nucleus. Tumor or epithelial cells were identified by their
generally large cell size, pleomorphic nucleus, and dark nucleoli.
Mesenchymal cells had elongated and spindle-shaped nuclei
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Figure 1.

Artificial Intelligence identifies nuclear phenotypes in human and mouse lung can-
cers. (A) H&E-stained sample from a patient with squamous cell carcinoma (left). The
same H&E-stained image with different cell types identified by the HALO Al nuclear
phenotyping algorithm overlaid with corresponding colors (right). Zoomed images
show more detail of the different cell types identified in the tumor immune micro-
environment. (B) H&E-stained sample from Kras®'?P/Lkb1-null mouse with squamous
cell carcinoma (left), with the cell types identified by the HALO Al algorithm (right).
Cell types are color-coded as follows: epithelial/tumor cells (red), mesenchymal cells
(dark blue), neutrophils (light blue), plasma cells (orange), lymphocytes (green), and
macrophages (yellow). H&E, hematoxylin and eosin.

resembling endothelial cells, smooth muscle, fibroblasts, and
malignant epithelial cells that had undergone an epithelial-
mesenchymal transition. Lymphocytes were characterized by
small cytoplasm containing a small but often dark and rounded
nucleus. Lastly, macrophages were identified by their round nuclei
and diffuse cytoplasmic area.

Next, we examined the concordance of the nuclear phenotyper
algorithm with traditional IHC approaches. First, we compared the
identification of lymphocytes using the algorithm to IHC staining
of the T cell marker CD3 and observed a strong overlap in cell
identification by the 2 methods (Fig. 2A). We recently reported
that when one copy of the gene encoding the histone methyl-
transferase EZH2 is deleted in Kras®'?®/p53-null murine tumors,
there are more abundant lymphocytes in the tumors.”® Using
tumors that were EZH2 wild-type, heterozygous, and null, we
directly compared the abundance of lymphocytes in the tumors as
measured by the nuclear phenotyping algorithm and by CD3 IHC
quantification (Supplementary Fig. S1A, B). With both methods,
we observed that EZH2 heterozygous tumors had statistically
more lymphocytes as a percentage of total cells. The concordance
of the 2 methods was also strong (Fig. 2B). To further validate the
ability of the algorithm to identify lymphocytes and plasma cells
accurately, we examined murine lymph nodes. The lymph nodes
of a murine sample can be observed with an abundance of
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The HALO Al nuclear phenotyping algorithm accurately identifies cell types. (A) Representative CD3 IHC staining of lung tumor with abundant tumor-infiltrating lymphocytes.
Lymphocytes in the IHC are stained with anti-CD3 antibody and stained brown (left) with HALO Al nuclear phenotyping algorithm overlaid on the H&E-stained section (right).
(B) Graph of the correlation of percentages of CD3+ cells versus lymphocytes identified by HALO Al with Pearson’s correlation coefficient and R? values indicated on the chart,
n = 24 mice total. (C) Representative F4/80 IHC staining of lung tumor with abundant tumor-infiltrating lymphocytes. Lymphocytes in the IHC are stained with anti-F4/80
antibody and stained brown (left) with HALO Al nuclear phenotyping algorithm overlaid on the H&E-stained section (right). (D) Graph of the correlation of percentages of
F4/80-+ cells versus macrophages identified by HALO Al with Pearson’s correlation coefficient and R? values indicated on the chart, n = 24 mice total. H&E, hematoxylin and

eosin; IHC, immunohistochemistry.

lymphocytes and lower numbers of the other cell types, which is
expected for a typical lymph node (Supplementary Fig. S1C). In
contrast, the nuclear phenotyer identifies numerous other cell
types, including abundant epithelial cells, when a metastatic tu-
mor is present in the lymph node tissue (Supplementary Fig. S1D).
Lastly, we used F4/80 IHC, compared it to macrophages identified
by the phenotyper and again observed a strong concordance be-
tween the methods (Fig. 2C, D). Taken together, these data indicate
that the HALO Al nuclear phenotyper is an easy and reproducible
way to identify changes in the TME.

Identification of Predominant Cell Types Within Lung Cancer of
Genetically Engineered Mouse Models

To further investigate the capabilities of the HALO Al nuclear
phenotyping algorithm, we examined H&E-stained tumors from 4

distinct lung cancer models: KRAS®™?P/p53-null lung adenocarci-

ma,”"?®  PIK3CA®#K/p53-null  lung  adenocarcinoma,*®
EGFRT790M/L858R lung adenocarcinoma,’’ and KRAS¢?P/Lkb1-null
mixed lineage tumors.'”>? Consistent with numerous previous
reports,’>~7 all 4 models had large populations of macrophages at
the site of the tumors. When considering the other abundant
populations, the KRAS¢?P/p53-null model possessed the highest
percentage of neutrophils relative to the other 2 models (Fig. 3A);
the PIK3CAP#X/p53-null model had the highest percentage of
mesenchymal cells (Fig. 3B); the EGFR™9OM/1858R mytant model
had the largest proportion of lymphocytes present (Fig. 3C); and
the KRASC™?P/Lkb1-null had the most plasma cells (Fig. 3D).

In addition to the KRAS®'?P/Lkb1-null mouse model generating
adenocarcinomas, it is also capable of creating tumors of ade-
nosquamous and fully squamous histology.'”*? Again, consistent
with several reports,'7?? the algorithm showed that squamous
areas from the KRAS®'2P/Lkb1-null model predominantly recruit
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Diverse genotypes of murine lung adenocarcinomas have predominant macrophage infiltration. (A-D) Representative H&E-stained sections with different cell types identified by
the HALO Al nuclear phenotyping algorithm. Pie charts represent percentages of nonepithelial cells. (A) KRAS®'2®/p53-null lung adenocarcinomas, n = 8. (B) PIK3CA4>/p53-null
lung adenocarcinomas, n = 6. (C) EGFRT79OM/L858R [yng adenocarcinomas, n = 6. (D) KRASC'2%/Lkb1-null adenocarcinomas, n = 9. H&E, hematoxylin and eosin.

neutrophils (Fig. 4A). We then explored the SCC model generated
through biallelic deletion of the tumor suppressors Lkb1 and
Pten."® Tumors from this model recruit a considerable number of
neutrophils, as indicated by the presence of large pockets of
polymorphonuclear cells (Fig. 4B). Likewise, when we compared
immune cell composition from squamous tumor models, neu-
trophils predominated; however, among all the adenocarcinoma
models, macrophages predominated (Fig. 4C). The distinct tro-
pisms of the adenocarcinoma and squamous cell carcinomas were
particularly evident when the 2 tumors were juxtaposed, showing
macrophages recruited toward the adenocarcinoma histology and
neutrophils toward the squamous tumor (Supplementary Fig. S2).

Characterization of Human Non—Small Cell Lung Cancer Cell
Profiles

To examine the TME heterogeneity in human samples, we used
a TMA generated from 216 NSCLC tumor samples. Using this TMA,
we could recapitulate an accurate identification of the cells within
the TME using the HALO Al nuclear phenotyping algorithm in both

ADC and SCC (Fig. 5A, B). In contrast to our observations in the
mouse models of NSCLC, we did not observe any significant dif-
ferences between the cell types within these tumors (Fig. 5C). The
most commonly identified TME cell type was lymphocytes, in
agreement with other studies.*” The fact that the histotype did
not predict cell infiltration suggests that more heterogeneous
factors contribute to the recruitment of immune cells within the
tumor stroma in human samples than those present in our
genetically defined mouse models.

When comparing the percentages of mesenchymal cells to
lymphocytes, we observed a very significant negative correlation
between the 2 populations (Fig. 6A). Furthermore, we observed a
strongly significant negative correlation between tumor-
infiltrating neutrophils and lymphocytes (Fig. 6B). This finding
may indicate that mesenchymal cells and neutrophils in the tumor
stroma are phenotypically detrimental to lymphocyte survival or
recruitment. To further interrogate the relationship between the
immune infiltrates identified by the HALO Al nuclear phenotyper,
we created a correlation plot (Fig. 6C). Positive correlations were
observed between mesenchymal cells and neutrophils, suggesting
that the mesenchymal cells could be phenotypically attracting
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Neutrophil infiltration predominates in genetically defined murine lung squamous cell carcinomas. (A, B) Representative H&E-stained sections with different cell types
identified by the HALO Al nuclear phenotyping algorithm. Pie charts represent percentages of nonepithelial cells. (A) KRAS®'2P/Lkb1-null squamous cell carcinomas, n =
6. (B) Lkb1-null/Pten-null squamous cell carcinoma, n = 6. (C) The bar graph represents the proportion of nonepithelial nuclei for the indicated genetic mouse models of
NSCLC, plotted as the mean + SEM. One-way ANOVA with multiple comparisons and Holm-Sidék's multiple comparisons tests were performed. *P < .02, **P < .006, ***P
<.001, and ****P < .0001. H&E, hematoxylin and eosin; NSCLC, non—small cell lung cancer.

neutrophils and together support a highly immunosuppressed
environment. A negative correlation was also observed between
macrophages and lymphocytes, but the degree of the correlation
was lower.

We last sought to determine whether the abundance of any
cell types within the tumors predicted poor overall survival in
this cohort. We observed that patients whose tumors were
classified as mesenchymal low survived longer than patients
whose tumors were classified as mesenchymal high (Fig. 6D).
This result was similar whether we queried all causes of death or
if we limited the cohort to lung cancer-specific death
(Supplementary Fig. S3A). However, with multivariate analysis,
confounding variables of sex, age at diagnosis, and tumor his-
tology reduced the significance of the correlation of mesen-
chymal cells with poor survival (Supplementary Fig. S3B, C,
Supplementary Table S1). Although not significant, high
lymphocyte abundance predicted a better prognosis, and a
higher number of plasma cells predicted a worse prognosis
(Supplementary Fig. S3B, C).

Discussion

While there are many methods to investigate the TME, some
are expensive, time-consuming, and often destroy the sample in
the process of data generation. We present a HALO Al nuclear
phenotyping algorithm to examine the TME in NSCLC. This
method boasts low overall costs, quick turnaround, and the ability
to retain the original sample. Using both human and mouse his-
tology samples, we demonstrated the algorithm’s ability to iden-
tify different TME cell types, validating it as a tool for researchers
and a potential clinical tool for selecting appropriate treatments.
Using GEMMs with known immune cell tropisms, we confirmed
that the nuclear phenotyping algorithm works very well to define
the neutrophil and macrophage populations in lung cancer. This is
one of the many ways this software can differentiate between the
microenvironments of these subtypes of NSCLC. We further
confirmed the efficacy of the algorithm by assessing lymph node
sections and comparing the algorithm results to a more traditional
[HC staining for CD3. The algorithm performed very well with



Tanner J. DuCote et al. / Lab Invest 103 (2023) 100176

oo o

Proportion of Stromal Nuclei (%)

Figure 5.

The HALO Al nuclear phenotyper illustrates heterogeneity in patient NSCLC samples.
(A) Representative human squamous cell carcinoma. (B) Representative human
adenocarcinoma. (C) Proportions of the different cell types within the tumor
microenvironment, SCC n = 102; ADC n = 83; ADSCC n = 14; poorly differentiated
n = 17. ADC, adenocarcinoma; ADSCC, adenosquamous and mixed histology tumors;
H&E, hematoxylin and eosin; NSCLC, non—small cell lung cancer; SCC, squamous cell
carcinoma.

each of these known data sets and could provide additional in-
formation about the abundant cell types in the GEMMSs examined.

In a patient sample TMA, the Al nuclear phenotyper provided
a rapid and simple way to study the correlation of different cell
types at the tumor site. Our data demonstrated that neutrophils
and lymphocytes are highly negatively correlated with human
NSCLCs. This finding is in agreement with fresh patient tissue
flow cytometry, which demonstrated that neutrophils are
negatively correlated with CD8+ T cells.”* Given that CD8+ T
cells are responsible for eliminating malignant epithelial cells in
immunotherapy contexts, a high neutrophil/low lymphocyte
tumor may not respond well to immunotherapy, and this ap-
pears to be the case in patient samples.>®> Furthermore, we
showed a strong negative correlation between mesenchymal
cells and lymphocytes, and this is an additional avenue that
could be explored for immunotherapy response. Given that the
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Figure 6.

Lymphocytes negatively correlate with neutrophils and mesenchymal cells, and
mesenchymal cells predict poor prognosis in human samples. (A) Correlation plot
between percentages of mesenchymal cells and lymphocytes, Pearson’s correlation
coefficient, and P value indicated on the graph. (B) Correlation plot between per-
centages of neutrophils and lymphocytes, Pearson’s correlation coefficient, and P
value indicated on the graph. (C) The correlation matrix depicts relationships be-
tween all tumor-associated cell types. (D) Kaplan-Meier survival plot between
mesenchymal low vs mesenchymal high tumors split at the median. The P value
shown is for the Mantel-Cox log-rank test, n = 216 patients for all plots.

mesenchymal cell population also correlates with poor prog-
nosis, further characterizing this heterogeneity will be an
important next step. Lastly, we observed numerous plasma cells
in human NSCLCs, and recent reports have demonstrated that
plasma cells may have a negative correlation to survival in lung
cancer patients.>*>° These findings emphasize the importance of
this program as a tool for researchers to understand the function
of the TME and the potential of this method to help determine
patient treatment strategies. This easy-to-implement approach
allows for a specific understanding of the TME at the site of the
tumor itself and has the potential to allow researchers to
investigate further how the abundance of different cell types
influences the efficacy of therapies.

The data described here do not represent the first instance
where Al has been suggested as a potential prognostic tech-
nique for histopathology. In fact, Al has been predicted to
become a useful, if not necessary, tool for pathologists to triage
slide analysis, quantify phenotypes, and even predict genetic
alterations.’®3” However, there remain concerns about the
ability of Al techniques to accurately differentiate between
histopathologies, particularly if the algorithm is not trained on
certain distinct patterns. Among proponents of Al, it is widely
accepted that the rigor of these algorithms will need to be
tested abundantly to prove that their efficiency is equal to that
of a pathologist before they are implemented as a prognostic
technique.’” Therefore, the immediate implications of this
technique are to allow translational research to begin adopting
this technique while further clinical validation is ongoing.
Although we specifically study NSCLC, we believe this artificial
intelligence-based cell detection algorithm will have wider
utility in many other diseases characterized by heterogeneous
chronic inflammation.
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